
Dedicated Heuristic for a Back-and-Forth Single-Line Bus Trip
Timetabling Problem

Sylvain FOURNIER

1WPLEX Software
Rod SC 401, 8600 Corporate Park bloco 5 sala 101

88050-000 Santo Antônio de Lisboa, Florianópolis SC

sylvain@wplex.com.br

ABSTRACT

The problem tackled in this paper is a Trip Timetabling Problem where only one
line is considered and this line has both a forward and backward way. The forward and
backward trips are generated together in order to create a better timetable for vehicle
scheduling, which is the next step in the bus transit scheduling process. For this, we first
create forward trips time periods from the initial time periods and demands in backward
and forward trips. For each of these created time periods, the demand in number of trips
is computed using a integer-programming model and the initial demands. Then, trips are
generated from these demands using a simple greedy algorithm, such that in each time pe-
riod, the duration between each generated trip departure time is constant. This procedure,
followed by vehicle scheduling, shows very interesting results.

K EYWORDS. Trip Timetabling, Heuristic, Linear Programming, Logist ics and Trans-
portation

RESUMO

Neste artigo apresentamos um Problema de Programação Horária de Viagens de
uma linha de transporte urbano, com viagens de ida e volta. Estas viagens são geradas con-
juntamente para criar um quadro horário, visando otimizaro Escalonamento de Veı́culos.
Para isso, são dadas faixas horárias iniciais e as demandas de viagens na ida e volta. Esses
dados são utilizados para criar novas faixas horárias para determinação das viagens de ida.
Para cada uma dessas faixas criadas, a demanda em número de viagens é calculada usando
um modelo de programação inteira, que leva em consideração as demandas iniciais. Em
seguida, viagens são geradas a partir dessas demandas usando um algoritmo guloso sim-
ples tal que, em cada faixa horária, a duração entre o tempo de partida de cada viagem
gerada é constante. Este processo, seguido pelo Escalonamento de Veı́culos, apresentou
bons resultados.

PALAVRAS -CHAVE . Programação Horária de Viagens, Heuŕıstica, Programaç̃ao Lin-
ear, Loǵıstica e Transporte

1387

1. Introduction

Bus transit scheduling includes various steps, including route design, trip timetab-
ling, vehicle scheduling, crew scheduling and crew rostering. Due to the complexity of
the overall scheduling, each of these steps are usually tackled separately, in spite of the
strong dependences between each other. However some research effort is made to treat the
problems at the same time. In this paper, we will focus on the trip timetabling aspect, with
a view to the vehicle scheduling. Indeed, when generating the bus timetables for a given
day, the allocation of these created trips to vehicles must be taken into account in order to
minimize the number of vehicles needed and hence the costs for the bus company.

WPLEX Software is a company that provides tools for planningand controlling
bus transit operations as well as passengers information. The software WplexON, which
also proposes solutions for vehicle scheduling and crew scheduling (seeFournier(2009)),
has a fast engine for solving the trip timetabling problem which is presented in this paper.

In section2, we describe the Trip Timetabling Problem that we face. An overview
for the general solution method is given in section3. The first step of creating time periods
from the initial forward and backward trips time periods, and determining the demand for
each time period is detailed in section4. Then, section5 describes the greedy way of
generating the timetable from this demand. Some results arepresented and analysed in
section6, comparing the algorithm with a method where the backward trip generation is
separated from the forward trip generation. Section7 is dedicated to some conclusions and
perspectives.

2. A Back-and-Forth Single-Line Trip Timetabling Problem

In the Trip Timetabling Problem (also known as Transit Network Timetabling Prob-
lem), the aim is to provide a schedule of trips in order to meetthe passenger demand, and
minimizing the costs and the passenger waiting time. There are plenty of variations of this
problem, either with respect to the objective or to the input. In our case, the trip schedule
has to satisfy the passenger demand for a number of time periods during the day. The pas-
senger demand can be used to compute the number of needed trips for each time period
and with some additional data such as the vehicle capacity and the wanted occupancy rate.

The multi-line case has been widely studied and in this case,the objective is often
to maximize the synchronization between the trips of each couple of lines, in order to
minimize the waiting time for any transferring passenger.

Fleurent et al.(2004) use a dedicated heuristic to maximize the number of meeting
times between the buses, using time windows and a piecewise-linear cost function.Voss
(1992) proposes a quadratic semi-assignment model for the synchronization of timetables
andSchröder and Solchenbach(2006) use and customize this model to solve a problem
with mixed train and bus lines. These last three papers startfrom an existing timetable and
allow only small changes in the schedule.Ceder et al.(2001) show that a mixed-integer
formulation for this problem is large and hard to solve, and propose a polynomial heuristic
to maximize the number of simultaneous arrivals.

Some researchers also solve both the timetabling and the vehicle scheduling prob-

1388

Figure 1. Headway and layover

timeheadway

location
layover

Forward
trips

Backward
trips

lems in an integrated approach. For example,van den Heuvel et al.(2006) tackle this
problem using integer programming models combined with local search in a time-space
network.

We consider the case of a back-and-forth single-line, whereeach direction has its
own time periods and demands in trips. For example, the forward direction of a line from
the suburbs to the center will have a higher demand in the morning and its backward direc-
tion in the evening. The case of a line with only one way (for example a circular line) will
not be treated here as the solution can be obviously deduced from the algorithm presented
in this paper. The reason why we focus on this special case is that various transit compa-
nies prefer to split their overall schedule into parts basedon each line of the bus network,
for both an easier handling of the data and a better view of theschedule, and the possible
necessity to prevent buses or drivers from changing lines.

Figure1 is an illustration for the important definitions oflayover (time between a
forward trip and its associated backward trip) andheadway(time between two consecutive
forward trips).

3. Simultaneous back and forth generation of trips

A simple way to generate trips for a back-and-forth single line is to provide the
timetable for each direction separately. Each of these tripgenerations is very simple, but
this method has two main drawbacks, considering the vehiclescheduling which is the
following step of the overall process:

• there can be a lot of forward trips without associated backward trip (or vice-versa),
which would result either in the creation of a lot of deadheads (without any passen-
gers in the bus), or in the use of a lot of addicional blocks (orbuses) performing
only few trips,

• the generated forward trips are not synchronized with the backward trips, which
may create more blocks with a significant total idle time in the vehicle scheduling
step.

These drawbacks can be resolved by a post-processing, creating deadheads and time shift-
ing trips for a better synchronization. This procedure may be heavy and time-consuming.

1389

In our approach, we chose to generate simultaneously the forward and backward
trips, such that:

• there are as many forward trips as backward trips,
• the forward trip is always defined before its associated backward trip, with a mini-

mum layover between both trips.

This way, we are sure that in the vehicle scheduling step, each vehicle will be able to
perform a backward trip just after a forward trip and will be made available at the starting
point of the line, which is generally the main bus terminal, in order to perform another
forward trip.

4. Computing the demand in forward trips for each time period

Let a set of time periodsT0, T1, . . . , Tn be defined by the limit times(t1, t2, . . . , tn)
(with t1 < t2 < . . . < tn), meaning that then+ 1 time periods are the following:

• T0 = [t0, t1[wheret0 is the day beginning time,
• T1 = [t1, t2[,
• · · ·
• Tn−1 = [tn−1, tn[,
• Tn = [tn, tN [wheretN is the day ending time.

Each direction (forward and backward) has one such set of time periods (not necessarily
the same) and is characterized by demands in integral numberof trips for each of these time
windows, for instance(d(T0), d(T1), . . . , d(Tn)) (d(Ti) being the demand in time periodTi,
0 ≤ i ≤ n).

The very first step of our procedure is to create time periods for the generation of
forward trips as detailed in Figure2. Every backward trip will be automatically generated
from the associated forward trip. Hence, in order to be able to generate the forward trips
in order to meet the backward trips demand, we need to change the backward trips time
periods into time periods on forward trips.

Let’s suppose, for example, that the forward trip duration is a constantτ . Let’s
keep the same layoverl for every couple of trips (forward / backward). This value can be
chosen as the minimum layover between forward and backward trips in order to keep a
good quality of service. For example, ifl = 0 there is a high probability of delays running
along the day due to the trip duration uncertainty.

Using these notations, if a forward trip starts at timet, the associated backward trip
will start at timet + τ + l. Inversely, if a backward trip is needed to start at timet, its
associated forward trip will have to startat mostat timet− (τ + l).

Let the backward trips time periodsB0, B1, . . . , Bm be defined by the limit times
(b1, b2, . . . , bm). Then, we define the forward trips time periods to meet the backward
demand with the following times:F ′ = (b1 − (τ + l), b2 − (τ + l), . . . , bm − (τ + l)).
This is represented in Figure2 by the arrows between the backward time periods and the
intermediate time periods (Step 1).

Note that here, we supposed thatb1 − (τ + l) > t0. If this was not the case, we can
artificially set a newt0 that satisfies the inequality, and add a new time period (between the
newt0 and the former) with null demand, for each given set of time periods.

1390

Figure 2. Steps for the final time periods creation

Step 1
Step 2

time periods B
Backward

Forward
time periods F

time periods F’
Intermediate

τ + l

F4F2 F3

S1

F0

S0 S2

t0 tN

time periods G

B3

F1

B0

S3
Final

S6S5S4

B1 B2

F ′
0 F ′

1 F ′
3F ′

2

At this point, the forward trips have two sets of time periods:

• the time periodsF = (f1, f2, . . . , fn) to satisfy the forward trips demandD =
(d(F0), d(F1), d(F2), . . . , d(Fn)),

• the time periodsF ′ = (f ′

1, f
′

2, . . . , f
′

m) to satisfy the backward demandD′ =
(d(F ′

0), d(F
′

1), d(F
′

2), . . . , d(F
′

m)) = (d(B0), d(B1), . . . , d(Bm)).

The forward trips have to be timetabled in such a way that theymeet the two sets of de-
mands. Let’s consider the intersectionG of the two sets of time periods. More formally,
G = {S0, S1, . . . , Sp} is defined by(s1, s2, . . . , sp) such that:

• s1 < s2 < . . . < sp,
• ∀k ∈ {1, . . . , p}, ∃j ∈ {1, . . . , n}, sk = fj or ∃j ∈ {1, . . . , m}, sk = f ′

j,
• ∀j ∈ {1, . . . , n}, ∃k ∈ {1, . . . , p}, fj = sk,
• ∀j ∈ {1, . . . , m}, ∃k′ ∈ {1, . . . , p}, f ′

j = sk′.

The arrows in the lower part of Figure2 (Step 2) show an illustration of this intersection
for a simple example. As a result:

• each time periodFj in F is the union of some time periods inG:
Sk(j), Sk(j)+1, . . . , Sq(j) (0 ≤ k(j) ≤ q(j) ≤ p),

• each time periodF ′

j in F ′ is the union of some time periods inG:
Sk′(j), Sk′(j)+1, . . . , Sq′(j) (0 ≤ k′(j) ≤ q′(j) ≤ p).

Hence, recalling that∀j ∈ {0, . . . , m}, d(F ′

j) = d(Bj), the demandsd(Si) have to satisfy
the following inequalities to be valid:

∀j ∈ {0, . . . , n} , d(Fj) ≤
q(j)∑

i=k(j)

d(Si) (1)

∀j ∈ {0, . . . , m} , d(Bj) ≤
q′(j)∑

i=k′(j)

d(Si) (2)

1391

In the example of Figure2, these constraints are:

d(F0) ≤ d(S0)

d(F1) ≤ d(S1)

d(F2) ≤ d(S2) + d(S3)

d(F3) ≤ d(S4) + d(S5)

d(F4) ≤ d(S6)

d(B0) ≤ d(S0) + d(S1) + d(S2)

d(B1) ≤ d(S3)

d(B2) ≤ d(S4)

d(B3) ≤ d(S5) + d(S6)

We have to determine the demand in number of tripsd(Si) for eachi, in such a way
to create as few trips as possible and let the trips as periodical as possible (try to minimize
the variations of headway). For this purpose, we introduce an integer program, where the
(integer) variables ared(Si), 0 ≤ i ≤ p and the constraints are all the inequalities of type
(1) and (2). We chose to use the following linear objective:

min
p∑

i=0

d(Si)

π(Si)
(3)

whereπ(Si) is the duration of time periodSi. The advantages of this cost function are the
following:

• it is linear and easy to solve,
• it will minimize the total number of trips,
• if there are several possible time periods for some trips, itchooses the longest time

period.

This small size model (usually less than 30 variables and constraints) is then solved by an
integer-programming solver to obtain the demands in numberof trips, for each time period
Si created from the forward trips and the backward trips time periods.

In the following, we will omit the “forward” and refer simplyto “trips”, as the
backward trips will be created simply from each forward trip, as described earlier.

Note that in the special case of a line with a single direction(without backward
trip), the resulting time periods are the initial forward trip time periods, with the original
demands.

5. Generating trip timetables in each time period

Inside each of the created time periods, we now have to generate the trip timetable
in order to let the headway between two forward trips as constant as possible. For this
purpose, we chose a greedy approach with the following basicprinciples:

• the headway between two consecutive trips is constant in each of the (created) time
periods,

1392

• the time of the first trip in the current time period is calculated from the time of the
last trip of the previous time period and the forecasted headway of the current time
period, in order to let headways as uniform as possible,

• the headway for the current time period is raised as much as possible if it is followed
by time periods with null demand.

Keeping a constant headway within a time period reduces the waiting time and makes the
schedule easier to remember for passengers.

We consider each time period one after another. We have to determine, for the
current time period, the headway and the time of departure ofthe first trip in the time
period. Lett0 be the departure time of the last generated trip, and the current time period
defined by the times[t−, t+]. Let π− = t− − t0 be the time between the last generated trip
and the beginning time of the current time period,π = t+ − t− the duration of the current
time period, andπ+ the total duration of the next time periods without demand. Figure3
illustrates these definitions.

Figure 3. Definitions for the determination of the headway

Time periods
with

demand = 0generated
trip

Last
Current time period

π− π π+

t− t+t0

Let d be the demand in number of trips in the current time period. Weassume that
d ≥ 1, as the cased = 0 is obvious (no trip created).

1. If possible, the headway is set toh = π−+π+π+

d+1
, and the first trip departure time to

t1 = t0 + h.
2. Using these values, if the last trip departure time is out of the time period (that is

td = t1 + (d − 1)h = t0 + d · h > t+), meaning that the additional time after the
time period (π+) is rather high, then we try to schedule the last trip at the end of the
time period, using the following values:

h =
π− + π

d
t1 = t0 + h

3. Considering the values defined previously (step 1 or 2), ifthe first trip departure
time is out of the time period (t1 < t−), we try to schedule it at the beginning of the
time period:

t1 = t−

h =
π + π+

d

4. With the values of step 3, once again it is possible that thelast trip departure time
goes out of the time period (td = t−+(d−1)h > t+), in which case it is scheduled
at the end of the time period by simply reducing the headway:h = π

d−1
. Of course,

this can be done only ifd ≥ 2, as in the cased = 1, the (only) trip was already
scheduled at the beginning of the time period at step 3.

1393

Figure 4. Choice of the headway for the current time period

4

3

2

1

Current time period

π = 6
(d = 3)

h = π−+π+π+
d+1 = 4

π+ = 5

h = π−+π
d

= 11
3

h = π+π+
d

= 11
3

h = π
d−1 = 3

π− = 5

All these steps are illustrated with a 3-trip example in Figure4.

More formally,h andt1 can be seen as optimal solution values for the following
linear program:

maxh

Subject to:

t1 ≥ t− (4)

t1 + (d− 1)h ≤ t+ (5)

t1 − t− + π− ≥ h (6)

t1 + dh ≤ t+ + π+ (7)

Constraints (4) and (5) ensure that the departure times for the first and the last trip (and
hence all the currently generated trips) are included in thetime period. Constraints (6) and
(7) guarantee that the idle time before the first trip and after the last trip is not lower than
the headway (so as to make the timetable more regular). Note that simplificated constraint
(7) can be expressed more explicitly in the following way:t+ − (t1 + (d− 1)h) + π+ ≥ h.

It can be shown easily (for example using a two-dimensional graphical approach)
that the values given previously forh andt1 are optimal with respect to this linear model.

6. Computational results

In order to get an evaluation of our algorithm, we decided to test the simultaneous
forward and backward trip generation algorithm, and compare its results with the approach
where the forward and backward trips are generated separately (often referred to in the fol-
lowing as “separated approach”), using only the part of the algorithm described in section5
(as in this case, the initial time periods and demands can be used). As the application to

1394

Table 1. Total demand in number of trips for forward trips and for backward trips, for each
line

Line Forward dem. Backward dem.
L1 90 82

L2-1 30 49
L2-2 26 38
L3 47 67
L4 30 50
L5 29 51
L6 11 16
L7 20 24

L8-1 31 32
L8-2 35 38
All 328 371

real life data is the main point here, the tests are performedon datasets from a WplexON
customer. The total numbers of trips required for the backward and the forward directions
are summed up for each line in Table1. In most of the line datasets, the daytime is divided
into 18 time periods.

L2-1 and L2-2 are two different datasets for the same line (L2), as well as L8-1
and L8-2 for line L8. At the bottom of the table, “All” stands for all the lines together,
including two circular lines (of total demand 40) which demands were added to the total
demand in forward trips. In the “All” case, the alternativesL2-1 (for line L2) and L8-1 (for
line L8) were chosen.

The trips are generated for every line separately and the results are given in Table2.
For each test, the blocks were generated after the trip timetabling, using the WplexON
vehicle scheduling module and allowing deadheads between each pair of bus terminals.

Table2 indicates in the first columns the number of trips and of blocks produced
by the algorithm on the one hand and considering the forward and backward directions
separately on the other hand. For example, line L1 produces 15 blocks using the algorithm
and 18 in the separated case. Note that in the separated approach, the number of generated
trips is exactly the sum of the demand in forward and backwardtrips, whereas for the
algorithm, the number of generated forward trips equals thenumber of generated backward
trips and is greater than the maximal value between the forward and the backward demand.
The last columns contains the ratios between the improductive time of the algorithm and
the improductive time of the separated approach, and the ratios of total duration of all the
blocks of the schedule, generated from the trips of the timetable. The improductive time
is the time during which a vehicle that performs a block is improductive (sum of idle time
and deadhead time).

The first thing that can be pointed out is that the number of trips generated by the
algorithm is always greater than for the separated approach. This is not surprising, as the
separated approach always generate the exact number of trips from the demand, whereas
the algorithm can generate more trips due to the restrictionto generate a backward trip
for each forward trip. In spite of this first observation, thenumber of blocks generated
in the vehicle scheduling step is very often lower for the algorithm than in the separated

1395

Table 2. Comparison between the algorithm and the solution o btained after separating the
forward and backward ways

Trips # Blocks Time ratio
Line Alg. Sep. Alg. Sep. Improd. Total
L1 212 172 15 18 1,0963 1,1953

L2-1 102 79 6 6 0,8074 1,0837
L2-2 84 64 5 5 0,6191 1,0238
L3 136 114 6 7 0,4330 0,8596
L4 102 80 6 6 0,9065 1,1499
L5 112 80 10 11 0,4541 0,9914
L6 42 27 2 4 0,5377 0,8195
L7 48 44 4 6 0,5043 0,8501

L8-1 80 63 8 8 0,5345 0,9582
L8-2 92 73 10 9 0,6188 0,9955
All 874 699 48 53 0,8949 1,1085

approach. For line L6 for example, only two blocks were necessary to perform the 42 trips
generated by the algorithm, whereas the 27 trips generated when separating the forward
and backward directions needed 4 blocks.

The total duration of the blocks (last column) is also often lower for the algorithm
than for the separated approach, despite the higher quantity of trips. This means that the
algorithm manages to leave a good set of trips for vehicle scheduling. We can also stress
the fact that the improductive time ratio is lower than 1. Thealgorithm doesn’t lead to
improductive time, in spite of the fact that it generates more trips, because these trips are
easily gathered in blocks, which is also the case in the multiline case (last line of Table2).

All of these tests were performed within a very low computingtime (two seconds
for the case with all the lines together).

7. Conclusion and perspectives

In this paper, we presented a single line trip timetabling problem with the necessity
to generate a good vehicle schedule from the created trips. Our algorithm, based on a
redefinition of time periods that are the intersection of theforward trips time periods and
the ones from the backward trips, generates more trips than necessary but outperforms
a simple generation (considering the forward and backward directions separately) when
creating schedules for vehicles. This is a good solution forthe bus transit company, as using
fewer buses lowers the total cost, but also for the passenger, who has a regular schedule of
buses and a low waiting time. The fact that the algorithm creates slightly more trips than
necessary is also positive for the customer satisfaction.

The repartition of the trips between the time periods can be improved, because
with the linear cost (3) we used, the algorithm chooses a time period independentlyof
the number of trips to generate. For example, if two trips canbe generated in any of two
time periods, the integer program will enforce the generation of both trips in the same time
period (the one with the greatest duration), although it would be better in some cases to

1396

generate one trip in each time period, especially if the difference of durations is small. To
overcome this issue, one could use a quadratic objective or adedicated heuristic. Another
improvement would be to adapt the headway in each time periodtaking vehicle scheduling
into account. This could be made possible minimizing the idle time between a generated
backward trip and the next forward trip or “pushing” a forward trip in order to allow a same
vehicle to perform both an already generated backward trip and this forward trip.

References

Ceder, A., Golany, B. and Tal, O.(2001). Creating bus timetables with maximal synchro-
nization.Transportation Research Part A: Policy and Practice 35, 913–928.

Fleurent, C., Lessard, R. and Śeguin, L. (2004). Transit timetable synchronization:
Evaluation and optimization. InProceedings of the 9th International Conference on
Computer-Aided Scheduling of Public Transport. San Diego CA (U.S.A.).

Fournier, S. (2009). Branch-and-price algorithm for a real-life bus crew scheduling prob-
lem. In L. Buriol, M. Ritt and A. Benavides, eds.,ERPOSul 2009 Anais. Porto Alegre
(RS, Brazil).

Schröder, M. and Solchenbach, I.(2006). Optimization of transfer quality in regional
public transit. Technical Report 84, Fraunhofer Institut für Techno- und Wirtschafts-
mathematik, Germany.

van den Heuvel, A. P. R., van den Akker, J. M. and van Kooten Niekerk, M. E. (2006).
Integrating timetabling and vehicle scheduling in public bus transportation. Technical
Report UU-CS-2008-003, Utrecht University, The Netherlands.

Voss, S.(1992). Network design formulation in schedule synchronization. In Desrochers
and Rousseau, eds.,Computer-Aided Transit Scheduling. Springer-Verlag, Berlin, pages
137–152.

1397

	Introduction
	A Back-and-Forth Single-Line Trip Timetabling Problem
	Simultaneous back and forth generation of trips
	Computing the demand in forward trips for each time period
	Generating trip timetables in each time period
	Computational results
	Conclusion and perspectives

